Rescaled pure greedy algorithm for Hilbert and Banach spaces
نویسندگان
چکیده
منابع مشابه
Rescaled Pure Greedy Algorithm for Hilbert and Banach Spaces
We show that a very simple modification of the Pure Greedy Algorithm for approximating functions by sparse sums from a dictionary in a Hilbert or more generally a Banach space has optimal convergence rates on the class of convex combinations of dictionary elements. AMS subject classification: 41A25, 41A46.
متن کاملBanach Spaces and Hilbert Spaces
A sequence {vj} is said to be Cauchy if for each > 0, there exists a natural number N such that ‖vj−vk‖ < for all j, k ≥ N . Every convergent sequence is Cauchy, but there are many examples of normed linear spaces V for which there exists non-convergent Cauchy sequences. One such example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . ) converges to √ 2 which is not a ra...
متن کاملConvergence of the dual greedy algorithm in Banach spaces
We show convergence of the weak dual greedy algorithm in wide class of Banach spaces, extending our previous result where it was shown to converge in subspaces of quotients of Lp (for 1 < p < ∞). In particular, we show it converges in the Schatten ideals Sp when 1 < p < ∞ and in any Banach lattice which is p-convex and q-concave with constants one, where 1 < p < q < ∞. We also discuss convergen...
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2016
ISSN: 1063-5203
DOI: 10.1016/j.acha.2015.10.008